Some examples of Mahler measures as multiple polylogarithms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some remarks on q-deformed multiple polylogarithms

We introduce general q-deformed multiple polylogarithms which even in the dilogarithm case differ slightly from the deformation usually discussed in the literature. The merit of the deformation as suggested, here, is that q-deformed multiple polylogarithms define an algebra, then (as in the undeformed case). For the special case of qdeformed multiple ζ-values, we show that there exists even a n...

متن کامل

Minimal Mahler Measures

We determine the minimal Mahler measure of a primitive, irreducible, noncyclotomic polynomial with integer coefficients and fixed degree D, for each even degree D ≤ 54. We also compute all primitive, irreducible, noncyclotomic polynomials with measure less than 1.3 and degree at most 44.

متن کامل

Identities between Mahler Measures

The purpose of this short note is to give a proof of the following identity between (logarithmic) Mahler measures (1) m(y + 2xy + y − x − 2x − x) = 5 7 m(y + 4xy + y − x + x) , which is one of many examples that arise from the comparison of Mahler measures and special values of L-functions [Bo], [De], [RV]. Let us recall that the logarithmic Mahler measure of a Laurent polynomial P ∈ C[x 1 , . ...

متن کامل

The values of Mahler measures

We investigate the set M∗ of numbers which occur as Mahler measures of integer polynomials and the subset M of Mahler measures of algebraic numbers (that is, of irreducible integer polynomials). We prove that every number α of degree d in M∗ is the Mahler measure of a separable integer polynomial of degree at most ∑ 1≤r≤d/2 ( d r ) with all its roots lying in the Galois closure F of Q(α), and e...

متن کامل

Multiple Polylogarithms: An Introduction

when s1, . . . , sk are positive integers and z a complex number in the unit disk. For k = 1, this is the classical polylogarithm Lis (z). These multiple polylogarithms can be defined also in terms of iterated Chen integrals and satisfy shuffle relations. Multiple polylogarithms in several variables are defined for si ≥ 1 and |zi | < 1(1 ≤ i ≤ k) by Li(s1,...,sk)(z1, . . . , zk) = ∑ n1>n2>···>n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2003

ISSN: 0022-314X

DOI: 10.1016/s0022-314x(03)00101-x